Este artículo es parte de la edición de febrero, 2021

Prevenir una pandemia futura imitando la selección natural

Un nuevo tipo de influenza aviar que puede infectar a las aves domésticas y al ser humano, llamado H7N9, surgió en China en febrero de 2013. Desde entonces, ha habido más de 1500 infecciones humanas confirmadas con un nivel de mortalidad confirmado del 40 %.

   

A raíz de COVID-19, estas cifras pueden parecer relativamente pequeñas. Pero proporcionan un ejemplo de los problemas con los que nos enfrentamos en el control de los virus de la influenza en los animales y cómo una comprensión más profunda acerca de ellos puede ayudarnos a predecir, prevenir y controlar sus brotes, protegiendo tanto a las aves domésticas como a la salud humana.

LOS VIRUS DE LA INFLUENZA INFECTAN A UNA GRAN VARIEDAD DE ANIMALES, PERO LAS CEPAS QUE MÁS NOS PREOCUPAN SON LAS QUE CIRCULAN ENTRE LOS CERDOS Y LAS AVES DOMÉSTICAS EN LAS QUE LAS PERSONAS DE LAS INDUSTRIAS AGRÍCOLAS TIENEN UN ESTRECHO CONTACTO CON LOS ANIMALES.

   

Los virus de la influenza pueden mutar rápidamente, lo que le permite escapar de las respuestas inmunitarias de los animales que infectan, e incluso saltar a nuevas especies.

Ha habido cinco grandes oleadas epidémicas de H7N9 en China. La última ola en 2016-2017 produjo la enfermedad originalmente leve de las aves domésticas, pero mutando para causar mayores niveles de mortalidad en ellas y extendiéndose casi por todas partes del país. La gravedad de la situación del H7N9 AIV llevó al gobierno chino a implementar un programa de vacunación masiva contra el H7N9 en las aves domésticas en 2017.

Desde su uso, el número de brotes de aves domésticas junto con las infecciones humanas ha disminuido drásticamente, notificándose sólo tres casos de estas últimas durante 2017 a 2018 y uno durante 2018 a 2019. Esto puede sonar como que la vacunación ha resuelto el problema y el virus ahora se ha erradicado, pero lamentablemente, este no es el caso pues a pesar de la reducción de los brotes debido a la vacunación, estos virus no han sido erradicados.

Esto se debe en parte al alto nivel de mutaciones de la influenza: la vacunación puede fomentar inadvertidamente la evolución de los virus con mutaciones que les permiten escapar de la inmunidad inducida por las vacunas. Una vez que un virus escapa, puede propagarse rápidamente, lo que hace que la vacuna sea ineficaz y se deba diseñar una nueva. Aquí es donde interviene nuestra investigación.

Nuestro objetivo es entender cómo los virus H7N9 podrían mutar potencialmente en el campo en respuesta a la vacunación, y cómo estos cambios genéticos podrían alterar la forma en que actúan – por ejemplo, haciéndolos más peligrosos para las aves domésticas o ayudándolos a infectar a los seres humanos de manera más eficaz -.

   

Al imitar el proceso de selección natural en el laboratorio, encontramos varias mutaciones e identificamos que una mutación específica permite que el virus escape de la inmunidad inducida por la vacuna. Es importante destacar que en 2019 se habían encontrado otras tres mutaciones que observamos en nuestros estudios de laboratorio, lo que indica que nuestro método puede predecir la evolución de los virus de la influenza.

Estas tres mutaciones evitan que los virus H7N9 se unan a las células humanas, pero aumentan su unión, replicación y estabilidad en las células y los embriones de ave. Esto podría significar que las cepas que tienen estas mutaciones representan una menor amenaza para la salud humana, pero aumentan el riesgo para las aves domésticas.

Esto demuestra que la vacunación masiva de las aves domésticas contra cepas H7N9 en China nos lleva a la evolución del virus de la pandemia humana.

Sin embargo, los virus con «mutaciones de escape» siguen siendo un riesgo significativo para las aves domésticas debido a su capacidad para escapar de la inmunidad inducida por las vacunas y persisten en las aves domésticas.

Nuestros estudios también pueden ayudar a explicar el éxito en el control del gobierno chino de la infección por H7N9 en los seres humanos mediante la vacunación masiva de las aves domésticas. Por un lado, la vacunación masiva de las aves domésticas las protege de la infección por H7N9 y reduce en gran medida el riesgo de infecciones humanas, ya que la mayoría de los casos humanos de H7N9 están relacionados con la exposición a aves infectadas o ambientes contaminados.

Por otro lado, incluso cuando algunos virus escapan a la inmunidad inducida por la vacuna, representan un riesgo reducido para los seres humanos debido a la pérdida de la unión de estos. Sin embargo, esto puede no ser el caso con todas las cepas. Pueden surgir otras mutaciones en el futuro que tengan potencial de pandemia humana o que sean aún más mortales para las aves domésticas.

EL EMPLEO DE UN MÉTODO QUE PUEDA PREDECIR CÓMO LA VACUNACIÓN PUEDE CAMBIAR LAS CARACTERÍSTICAS DEL VIRUS DE LA INFLUENZA ES MUY VALIOSO YA QUE PUEDE PROPORCIONAR UNA ALERTA AVANZADA DE MUTACIONES QUE PODRÍAN AUMENTAR LA PROBABILIDAD DE INFECCIÓN HUMANA.

La incorporación de estas mutaciones en los esfuerzos mundiales de vigilancia de la salud puede ayudar a las autoridades pertinentes a supervisar las amenazas potenciales y a adelantarse a ellas antes de que tengan la oportunidad de descontrolarse.  

MUNIR IQBAL Jefe del Grupo de Influenza Aviar del Instituto Pirbright  

Con el apoyo de:
Categorías
En esta edición febrero, 2021

Clasificados febrero 2021

Leer

Udon se une al European Chicken Commitment para garantizar el máximo bienestar animal de los pollos que sirve

Leer

Los conocimientos genéticos podrían ayudar a abordar Campylobacter

Leer

Balance de 2020 y perspectivas para el 2021 del sector avícola catalán

Leer

El MAPA actualiza la normativa por la que se establecen medidas específicas de protección frente a la influenza aviar

Leer

Nuevo programa de vigilancia y control de salmonella en gallinas ponedoras para 2021

Leer

Otras ediciones

12 / 2022 LEER
11 / 2022 LEER
10 / 2022 LEER
09 / 2022 LEER
08 / 2022 LEER
07 / 2022 LEER
06 / 2022 LEER
05 / 2022 LEER
04 / 2022 LEER
03 / 2022 LEER
02 / 2022 LEER
01 / 2022 LEER
12 / 2021 LEER
11 / 2021 LEER
10 / 2021 LEER
09 / 2021 LEER
08 / 2021 LEER
07 / 2021 LEER
06 / 2021 LEER
05 / 2021 LEER
04 / 2021 LEER
03 / 2021 LEER
01 / 2021 LEER
12 / 2020 LEER
11 / 2020 LEER
10 / 2020 LEER
09 / 2020 LEER
08 / 2020 LEER
07 / 2020 LEER
06 / 2020 LEER
05 / 2020 LEER
04 / 2020 LEER
03 / 2020 LEER
02 / 2020 LEER
01 / 2020 LEER
12 / 2019 LEER
11 / 2019 LEER
10 / 2019 LEER
09 / 2019 LEER
08 / 2019 LEER
06 / 2019 LEER
06 / 2019 LEER
05 / 2019 LEER
04 / 2019 LEER
03 / 2019 LEER
02 / 2019 LEER
01 / 2019 LEER
12 / 2018 LEER
11 / 2018 LEER
10 / 2018 LEER
09 / 2018 LEER
08 / 2018 LEER
08 / 2018 LEER
07 / 2018 LEER
06 / 2018 LEER
05 / 2018 LEER
04 / 2018 LEER
03 / 2018 LEER
02 / 2018 LEER
01 / 2018 LEER
12 / 2017 LEER
11 / 2017 LEER
10 / 2017 LEER
09 / 2017 LEER
08 / 2017 LEER
06 / 2017 LEER
05 / 2017 LEER
04 / 2017 LEER
03 / 2017 LEER
02 / 2017 LEER
01 / 2017 LEER
12 / 2016 LEER
11 / 2016 LEER
10 / 2016 LEER
09 / 2016 LEER
08 / 2016 LEER
07 / 2016 LEER
06 / 2016 LEER
05 / 2016 LEER
03 / 2016 LEER
02 / 2016 LEER
01 / 2016 LEER
11 / 2015 LEER
10 / 2015 LEER
09 / 2015 LEER
08 / 2015 LEER
07 / 2015 LEER
06 / 2015 LEER
05 / 2015 LEER
04 / 2015 LEER
03 / 2015 LEER
02 / 2015 LEER
01 / 2015 LEER
12 / 2014 LEER
11 / 2014 LEER
10 / 2014 LEER
08 / 2014 LEER
07 / 2014 LEER
06 / 2014 LEER
05 / 2014 LEER
04 / 2014 LEER
03 / 2014 LEER
02 / 2014 LEER
01 / 2014 LEER
12 / 2013 LEER
11 / 2013 LEER
10 / 2013 LEER
09 / 2013 LEER
08 / 2013 LEER
07 / 2013 LEER
06 / 2013 LEER
05 / 2013 LEER
04 / 2013 LEER
03 / 2013 LEER
02 / 2013 LEER
01 / 2013 LEER